
RE-3 

STATISTICAL FILTERING OF SPACE 
NAVIGATION MEASUREMENTS 

bY 
James E. Potter and Robert G. Stern 

I August 1963 

I ! I 1  

1 -_ , 
Micro i icbe (MF) 4 -  

fi 653 July 6 5  

EXPERIMENTAL ASTRONOMY LABORATORY 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

C A M B R I D G E  39, M A S S A C H U S E T T S  

r .  



J 

t 

STATISTICAL FILTERING OF SPACE 
NAVIGATION MEASUREMENTS 

August 1963 

F’ 
b 

‘I 

__ - Note: This report has also been issued 
as AIM Preprint No. 63-333, presented 
u the AlAA*Guid.nce and Control Con- 
ference at Marrachusetts Institute of 
T ~ K I O ~ O B ~  August 12-14, 1963. 

EXPERIMENTAL ASTRONOMY LABORATORY 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

CAMBRIDGE 39, MASSACHUSETTS 

Prepared for Publication by ]ackson 6 Moreland, lnc. 

? 

I’ 



Section 

1 

2 

3 
4 

5 
6 

7 

8 

9 

10 

TABLE OF CONTENTS 

Page 

Introduction . . . . . . . . . . . . . . . . .  3 

The State Vector . . . . . . . . . . . . . . .  3 
Methods of Designing Estimators . . . . . . . . . .  4 

Optimization Criteria . . . . . . . . . . . . .  4 

Mathematical Model . . . . . . . . . . . . . .  4 

Maximum Likelihood Theory . . . . . . . . . . .  5 

Gauss-Markov Theorem . . . . . . . . . . . . .  6 

Minimizing the Volume of the Error  Ellipsoid . . . . .  6 

Minimizing Quadratic Forms in the Estimation Uncertainty . 7 
Biased and Unbiased Estimates . . . . . . . . . .  8 

APPENDIX 
A . . . . . . . . . . . . . . . . . . . . . .  10 

B . . . . . . . . . . . . . . . . . . . . . .  10 

c . . . . . . . . . . . . . . . . . . . . . .  11 

D . ,  . . . . . . . . . . . . . . . . . . . . .  11 

LIST OF REFERENCES . . . . . . . . . . . . . . . .  12 

ii 



I .  

c 

STATISTICAL FLTERING OF SPACE NAVIGATION MEASUREMENTS~ 
2 James E. Potter 

Robert G. Stern' 

Massachusetts Institute of Technology 

15" Abstract 

The criteria that have been used for design- 
ingan estimator which computes the state vector of 
a space vehicle from redundant navigational meas- 
urements a r e  reviewed and compared, It is shown 
that under the assumption of linearity all  these 
criteria lead to the same estimator (or filter). . 'If 
all measurement uncertainties have Gaussian dis- 
tributions, it is shown that the estimate obtained 
from optimum filter theory is identical with the 
maximum likelihood estimate. 

A proof is presented that the Bayes esti- 
mator, which is biased in favor of the initial con- 
ditions, leads to  the same result that would be ob- 
tained from an unbiased estimator to which six 
pseudo-mearrurements, representing the infzial 
conditions, have been add&? . 

specific area of space navigation, the results ob- 
tained are generally applicable to the estimation 
of multi-dimensional random variables. L 

Although the theory h e  been applied in the 

Nomenclature m 
General Notation 

Underlining a lower-case letter indicates 

An arrterisk over a capital letter indicates 

Enclosing a matrix within two vertical bars  

Angular brackets < > indicate the aver- 

that the letter represents a column vector. 

that the letter represents a matrix. 

indicates the determinant of the matrix. 

age value of the bracketed quantity. 

'The analysis in this paper represents one 
phase of research carried out for the National 
Aeronautics and Space Adminiatration under Con- 
t racts  NAS 9-153 and NsG 254-62. 

tory 

Laboratory 

'Staff Engineer, Instrumentation Labora- 

'Staff Engineer, Experimental Astronomy 

Superscript T following a vector o r  matrix 

Superscript - 1 following a square matrix 
indicates the transpose of the vector or  matrix, 

indicates the inverse of the matrix. 

Symbols 

symmetric matrix (in Section 7 and Ap- 
pendix C) 

r-by-s matrix (in Section 9) 

positive semidefinite r-by-r matrix (in Ap- 
pendices B and D) 

r -by-r  auxiliary matrix (in Appendix D) 

mean value of positive semidefinite quad- 
ratic form which is to be minimized 

pymmetric matrix (in Section 7 and Ap- 
pendix C) 

e-by-r matrix (in Section 9) 

r-by-s matrix (in Appendix B) 

positive semidefinite r-by-r matrix (in Ap- 
pendix D) 

n-by-n state transition matrix 

i-th diagonal element of D 

diagonal matrix 

* 

auxiliary diagonal matrix 

e r ro r  vector associated with the estimated 
state vector 2 
e r ro r  vector associated with I C ~  

covariance matrix associated with 

covariance matrix associated with zB 
covariance matrix associated with e r ro r  in 

A 

A 
X U  

arbitrary unbiased filter 

arbitrary biased filter 

unbiased filter which has same covariance 
matrix as FB 

* 
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F~~ 

FOB 

FR 

6J 
g 
G 

h 

h -k 

* 

ii 
6, 
;ru 
i" 
s 

L(5) 

k 

mk 

m 

m 

m -B 

- 
rc) 

- 

N m -B 
m -U 

rv m -U 
M..  

1J 

6 
d 

l3 

n 

6 
6 
P(U) 

<c 

maximum likelihood filter pk  vector equal to M h k  (in Appendix c) 
maximum likelihood filter which includes 
the fictitious measurements 

optimum biased filter 

n-by-n residual matrix (in Section 10) 

arbitrary unbiased filter which includes 
the fictitious measurements 

many-body gravitation vector 

3-by-3 matrix relating 6: to  

non-negative constant 

unit vector in  direction of k-th coordinate 

k-by-n matrix relating _m to 5 

number of dimensions of E 

positive semidefinite matrix 

position vector 

inertial acceleration vector 

variation in position vector 

6r evaluated at t = ti 

variation in inertial acceleration vector 

q-by-n matrix relating ,w to 2 

vector constituting i-th column of AI (in 
Appendix D) 

time 

* 

k-by-n matrix relating m B  t o  

(k  + n)-by-n matrix relating mu to  5 

identity matrix 

n-by-k matrix equal to FA minus F 

number of measurements being processed uU measurement uncertainty vector corres-  

likelihood function of 5 

principal subdeterminant of matrix M 

t rue  measurement deviation vector 

observed measurement deviation vector 

t rue measurement deviation vector for 
measurements actually made (in Section 10) 

t r  t race of a square matrix 

U measurement uncertainty vector 

1 measurement uncertainty vector corres-  

- 

* * 
ponding to m ML 

ponding to mu 
* 6 covariance matrix associated with 2 

6, 
Uu 

6zi 
V 

W 

covariance matrix associated with gB 

covariance matrix associated with g u  

velocity variation vector at  t = ti 

volume of e r ro r  ellipsoid 

vector whose e r ro r  ellipsoid is to be 
minimized 

* 

observed value of - 
measurement deviation vector whioh iQ-  

cludes the fictititious measurements i% covariance matrix associated with y 

observed value of mu xi i-th component of 5 

element in i-th row and j-th column of M 
* t rue state vector 

t rue state vector evaluated at  t = ti symmetric matrix (in Appendix A) X -i * A nonsingular matrix used t o  diagonalize A 
and 6 (in Appendix C) 

orthogonal matrix which diagonalizes A 
(in Appendix D) %.J 

A 

ZB 
A 

number of dimensions of ~f 

inverse of M (in Appendix C )  
\4 

zero matrix 

probability density of g 
rc) p(ml5) probability density of 

p ( ~ ( 5 )  

given 5 

probability density of g given 

estimated state vector 

biased estimate of 

unbiased estimate of 
fictitious measurements 

r-dimensional vector equal to BE 

arbi t rary s-dimensional vector 

zero vector 

gamma function of the argument 

which includes the 

* 

! 
i 

t 
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Subscripts 

* 
A relating to filter FA 

M L  

OB 

* 
relating to maximum likelihood filter FML 

relating to optimum biased filter FOB 
* 

1. Introduction 

The vector equation of motion of a space 
vehicle i n  f r ee  flight in a many-body gravitational 
field is 

F = a(st)  - .  ( 1-11 

The inertial acceleration f is due entirely to the 
many-body ghvitation vectot g, which is a function 
of both spatial position and time. 

In the usual guidance analysis Equation (1-1) 

is linearized by assuming that the vehicle's actual 
position and velocity at  any specified time differ 
only slightly from the pre-computed nominal, or 
reference, position and velocity at that time. If 
the symbol 6 ie used to  signify the variation of a 
quantity from its nominal value;' the linearized 
equations of motion of the vehicle can be wri t ten in 
matrix form as follows: 

*- 

6 E  = d 61- (1-2) 

Here 6 x  and 61. a r e  three-component column vec- 
t o r s  and G is a 3-by-3 matrix which is shown in 
Reference ( I )  to be symmetric for any gravitational 
field. The elements of G a r e  functions of the char- 
acterist ics of the reference trajectory and a r e  in- 
dependent of the components of 6 1 .  

order linear differential equations with variable CO- 

efficients. The solution of the' system contains six 
constante of integration. When the mathematical 
model is Specified and the reference trajectory has 
been pre-computed, the motion of the vehicle along 
its actual trajectory can be completely determined 
once the six integration Constants have been eval- 
uated. The object of this paper is to examine tech- 
niWk3 for  estimating the integration constants from 
a set  of redundant measurements, each of which is 
corrupted by noise. 

* 

* 

Equation (1-2) represents three second- 

2 .  The State Vector 

The integration constants a r e  conveniently 
grouped in the six-component column vector xi, 

known as the "state vector:' which consists of the 
three components of 6 r .  and the three components 
of the velocity variation vector 6xi at some speci- 
fied t ime ti. 

-1 

i 
(2-1) 

"' [ 6 x i ]  

Various values of ti have been used in the 
literature to define the particular state vector in  
t e rms  of which the actual motion of the vehicle is 
expressed. F o r  example, in Reference (2) ti is the 
time of cut-off of the main propulsion system and 
thus the t ime of initiation of the free-fall trajectory; 
in References (3)and (4) t i  is the "current" time, 
that is ,  the time at  which the most recent measure- 
ment was made o r  the time at  which the next meas- 
urement is to be made: and in Reference (5) ti is 
the nominal time of arrival at the destination. 

The goal of the data processing is to mini- 
mize the e r ro r s  in the estimate of the components 

of ri. 
paper that, for the estimation techniques consid- 
ered, the filter which minimizes the r. m. s. un- 
certainties in the components of the state vector at 
one specified time minimizes the r. m. 6 .  uncer- 
tainties in the components of the state vector at any 
other time, 

It is shown in the later sections of this 

If position variation is more significant 
than velocity variation, a s  is the case for the des- 
tination state vector when the mission objective is 
to pass through a fixed point i n  inertial space at  a 
fixed time, one might hope to get a more accurate 
estimate of position by designing a filter which 
minimizes the r. m. s. position uncertainty without 
regard for velocity uncertainty. It wi l l  be shown 
that the estimator which minimizes the r. m. s. un- 
certainty in the state vector also minimizes the 
r. m. s. uncertainty of any sub-vector of the state 
vector, and thus no improvement in the estimate 
can be achieved by neglecting the variation in 
velocity. 

the same estimate is obtained even if  the six in- 
tegration constants being considered consist of the 
components of position variation at one t ime (e. g., 
the time of arrival at the destination)and the com- 
ponents of velocity variation at a different time 
(e. g., the "current'' time). 

This concept can be extended to  show that 

3 
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3. Methods of Designing Estimators 

The conventional methods of designing es- 
timators for a multi-dimensional random variable 
fall into two main categories - the method of max- 
imum likelihood and the technique based on opti- 
mum filter theory, 

The maximum likelihood method w a s  de- 
veloped by statisticians and is based on the con- 
cept of maximizing a particular conditional prob- 
ability. 
from the method only by assuming that the indi- 
vidual measurements a r e  normally distributed. 

Practical  estimators can be obtained 

The object of optimum filter theory is to  
find a linear estimator which minimizes some 
function of the variances and covariances of the 
uncertainties in the estimated state vector. The 
development of the theory does not depend on the 
assumption that the uncertainties in  the measure- 
ments a r e  normally distributed. 

Irrespective of whether maximum likeli- 
hood theory or optimum filter theory is used, it 
is possible to  obtain either an "unbiased" or a 
"biased" estimate. An unbiased estimate is one 
in which only the direct measurements are used 
and no assumption is made about the a priori dis- 
tribution of the uncertainties in the components of 
the state vector. The unbiased estimator is char- 
acterized by the fact that the estimated state vec- 
tor  coincides with the t rue  state vector i f  all meas- 
urements are perfect. A biased, or Bayes, esti- 
mate is one in which the a priori distribution of the 
uncertainties in the components of the state vector 
is taken into account. 

4 .  Optimization Criteria 

There a r e  three general types of cri teria 
that have been used i n  applying optimization tech- 
niques to the redundant data problem. The first  
type, which is relevant to the method of maximum 
likelihood, consists of determining that state vec- 
tor  2 which maximizes the probability density of 
the occurrence of the measurements that have 
actually been obtained. This probability density is 
known as the likelihood function. 

The second type of criterion involves mini- 
mizing the volume of the e r ro r  ellipsoid associated 
with some linear function of the uncertainties in the 

components of the estimated state vector. If e is 

the n-dimensional column vector containing these 
uncertainties and i f  the vector _w is given by 

(4-1)  
* - w = R e  

then the e r ro r  ellipsoid in !-space is defined by 
the equation 

(4-2)  

4: 
where W is the covariance matrix associated with 
W .  - 

t 
For example, i f  
identity matrix; if _w consists of only that portion of 
- e containing the uncertainties in position, R is the 
following 3-by- 6 matrix. 

is equal to 2, R becomes the 

* 

r l  0 0 0 O 0 1  * 0 0 0 0 I (4-4) R =  I O  1 

The third type of criterion minimizes the 
mean value of a positive semidefinite quadratic 
form in the uncertainties of the estimated state 
vector. In mathematical notation, the quantity to 
be minimized is 

b = < g T & e )  
* 

where Q is a positive semidefinite matrix. 

5. Mathematical Model 

(4-5) 

The number of measurements being proc- 
essed is designated k; these measurements are 
combined in a k-dimensional column vector E. In 
order to  justify the use of linear theory, the com- 
ponents of 
values from those values which would be observed 
ideally if the vehicle were on i ts  reference t ra-  
jectory. 

a r e  the deviations of the measured 

In the general case 5, the parameter vector 
to be estimated, is of dimension n. Since it is as-  
sumed that redundant data are available, k is 
greater than n. 
gation n is equal to  six. 

For the state vector in space navi- 

The vector m is assumed to  be linearly re-  
lated to 11 in a manner that is a known function of 
the reference trajectory and of the type and time of 

each measurement. 

0 

a 
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F 

I 

* 
m Hx (5-1) 

* 
H is a k-by-n matrix whose elements a r e  pre- 
computed. The rank of H must be equal to n, for, 
if  this were not so, 5 could not be determined 
from m. 

vector is E, which differs from the t rue  value due 
to the uncertainties in the individual measurements. 
The difference between 
measurement uncertainty vector E. 

* 

The observed value of the measurement 

and 2 is equal t o  the 

* - % = m + = Hz + (5-2) 

The covariance matrix of the measure- 
ment uncertainties is the symmetric k-by-k ma- 
trix U. 

* 

3 = < g  .;'> (5-3) 
le 

For any practical case U is a positive definite 
matrix. 

The estimate of the state vector obtained 
from any of the filters to be developed is designated 
- 9. The e r r o r  in the estimate is 2. 

(5-4) 

The covariance matrix of the components of 5 is E. 

A e = x - x  _. . - * 

6. Maximum Likelihood Theory 

(5- 5) 

The likelihood function L@), in mathemat- 
ical terms,  is 

(6-1) N 
L(x) = P ( E  I If) 

where p ( E  1s) is the probability density of the ob- 
served measurement vector i%, given the state vec- 
tor  E. From Equation (5-21, is the sum of a 
determinietic function of 5 and the random vector 
- u. Therefore, 

(6-2) N 

P(z 15) = P(Ul 5)  

The probability density of g is independent of E, so 

that 

L e )  = P(E) (6-3) 

p(g) is the joint probability density of the com- 
ponents of u. The components of g are assumed to 
have a joint Gaussian distribution. Then, 

* * 
where I U I is the determinant of U. 

function of L(5), maximizing'the logarithm with 
respect to g yields the same value of as maxi- 
mizing the likelihood function itself. 

Since log L($ is a monotonically increasing 

(6- 5) 

The partial derivative of log L(5) with respect to 
xi, one of the components of IJ, when all other com- 
ponents of 5 a r e  held constant, is 

* T * - I ~  ax -1 xi 
+(=-HE) U 

(6-6) 

The second term on the right-hand side of Equation 
(6-6) is the transpose of the f i rs t  term. Since both 
terms a re  scalar quantities, they a r e  equal to each 
other. 

m 

T 
The partial derivative is a row vec- 

a xi 
tor with a one in  the i-th position and all other com- 
ponents zero. Therefore, the right-hand side of 
Equation (6- 7) represents the i-th component of the 
column vector sT *v-' (g - H 5).  When the likeli- 
hood function is a maximum, each of the n partial 
derivatives of log L(z) with respect to the com- 
ponents of g vanishes. Then, 

* 

( 6- 8)  

The solution of (6- 8) for 5 is iML, the maximum 
likelihood estimate of 5. 

(6-9) A * w  
XML FMLG 

I &T 6- 1 k)- 1 RT 8- 1 
where 

(6-10) 
* 
F~~ 

5 



It may be noted tlia A vector Y is - A  
A :: ;: 

f f A  = FA ( H E  + y) 

Since the filter is unbiased, 
* * *  
F A H =  I 

P 

(7-1) 
c 

F,,, H = I (6-11) 
c 

so that the maximum likelihood filter FhlL is an 
unbiased filter. 

Froiii Equations (5-2)  and (6-9),  
(7-2) 

h 
Then, the estimation e r ro r  g A  is 

A * eA = xA - ff = F A Y  

* 
The covariance matrix EA is given by 

(7-3) * 
= - x + F X I L g  (6-12) 

The e r ro r  enIL in the maximum likelihood esti- 
mate is (7-4) 

(7-5) 

(7- 6) 

* 
(6- 13) A 

S j i L  = ZnTL - E F ~ , I L  U 
* 

The covariance matrix ERIL is then given by 

* 
If J is defined by 

* *  * 
J = FA - F~~ 

* *  
the product J H is 

* * * * *  * * * *  
J H = F  A H - F M L H = I - I = O  

* * *  
Substituting FA = J + FML into (7-4) yields 

(6-14) 

7. Gauss-hIarkov Theorem 

't h't * 
If A and B are  symmetric matrices, A will 

t 
be said to be greater than b i f  the matrix difference 
( A  - B) is positive definite. Similarly A _> B wi l l  
indicate that (A - B)is positive semidefinite. The 
standard definitions of "positive definite" and 
"positive semidefinite" a r e  given in Appendix A. 

,i h't * *  
* *  

4 r(k 
It is important to note that A > B does not 

k 

imply that each element of A is greater than the 
corresponding element of B. 

4 
For example, 

(7- 7) 

Equations ( 6- 10) and (7- 6), 

* +  * T * - l *  * 
= J H (H U H ) - l  = 0 (7-8) 

* * *< 

F~~ 
Equations (6-14), (7-7). and (7-8), 

From 

From 

(7-9)  

* 
In Appendix B it is shown that, since U is 

is positive semidefinite. 
* 9 *T 

positive definite, J U J 
Therefore, 

* 
(7-10) 

* 
2 E~~ 

* * *T 
Because 5 is positive definite, J U J 
only if J is the zero  matrix. 
be equal to  EML only i f  FA is equal to FML. 

not been necessary to  assume that the measurement 
uncertainties have a joint Gaussian distribution. 

can be zero * * 
Consequently, EA can 

It may be noted that in this derivation it has 

* t * 
even though the off-diagonal elements of the right- 
hand matrix a re  larger than the off-diagonal ele- 
ments of the left-hand matrix. 

The Gauss-llarkov theorem states that 
96 

* hlL 
under the assumptions postulated in Section 5 E 
is less than or equal to the E matrix for any other 
unbiased estimator. 
the variance of the component of the estimation un- 
certainty in any given direction i n  state space is 
minimized by the maximum likelihood estimate. 

To prove the theorem, let FA be a n  arbi-  
t ra ry  unbiased filter. The corresponding state 

This theorem indicates that 

- 8. Minimizing the Volume of the E r r o r  Ellipsoid 

The  f i r s t  type of optimum filter to be de- 
veloped is that which minimizes the volume of the 

I 6 



t 

J 
a ,  

I 
b 

t, 

er ror  ellipsoid in !-space. 
e r ro r  ellipsoid is (4-2). Its volume is 

The equation of the 

where _w is a q-dimensional vector, It is apparent 
that, for a given value of q, the volume of the 
ellipsoid is a function of the square root of the 
determinant of the covariance matrix W. Thus, 
minimizing the ellipsoidal volume is equivalent to 
minimizing I w I. 

may be written in terms of R and E. 

* 

* 
* 

By the use of Equations (4-1)and (4-3) W * * 

* * * T  
i b = ( y y T > = ~ ~ ~  (8-2) 

* * 
1: EML and E are,  respectively, the co- 

variance matrices associated with the uncertain- 
ties in the maximum likelihood estimator and with 
any other unbiased estimator, then from the 
Gauss-Markov theorem (EA - EML) is positive 
s e m i d e f i n i t e  A m  B.it ie shown that. if 

A 

* * 

* *  
(EA - E@is polritive 'eemiddinite, the matrix 
pyduct  (EA - sML)kT, which is equal to 

~ -- 
(%A - kxlrL), is also positive semidefinite. Fin- 
ally, f rom Appendix C, 

* 
I'AI 1 !w?vILl (8-9) 

Therefore, use of the maximum likelihood esti- 
mator results i n  the minimum volume of the error  
ellipsoid in !-space. 

It may be shown that if  W A l  WML the er- 
r o r  ellipsoid corresponding to the maximum like- 
lihood estimator ie contained in the e r ro r  ellipsoid 
corresponding to the other estimator. 

* * 

* 
If the estimator FA actually minimizes 

I ib I s 0  that 

(8-4) 

* 
then from Appendix C the two W matrices a r e  
equal. 

* * 
w~ E w~~ ( 8- 5) 

Thus. 
* *  R E A R T  = &ENlL?tT (8-6) 

* 
If q = n, so that R is of rank n and can be inverted, 

.* * 
E~ = *ML (8-7) 

In Section 7 it was shown that Equation (8-7) implies 
that 

* * 
(8-8) F~ = F~~ 

Therefore, when q = n, the optimum filter is 

7 

unique. 

* * 
FA, only one of which is equal to  FML, all satis- 
fying the criterion that W be minimized. 

One possible type of R matrix for the case 
q = n is the state transition matrix C which trana- 
forms the state vector xi at time ti to the state vec- 
tor  x . at time t 

If q < n, there may be a family of filters 

* 
* 

* 
si 

j. -.I 

* 
x = c j p i  
- j  

(8-9) 

Then 5 is the e r ror  vector associated with zi, and 
- w correspondingly is the e r ro r  vector associated 
with zj. Since q = n, the unique filter which mini- 
mizes the volume of the six-dimensional e r ro r  
ellipsoid associated with the state vector xi is also 
the unique filter which minimizes the volume of the 
six-dimensional e r ro r  ellipsoid associated with any 
other state vector x 
state vector is referred does not affect the accuracy 
of estimation. 

Thus the time t o  which the 
-j* 

If the % matrix is a hybrid state transition 
matrix which transforms x . into a vector consisting 
of the position variation at one time and the velocity 
variation at another time or into position variations 
at two different times or  into velocity variations at 
two different times, the same estimate of the state 

-1  

vector 5 at some arbitrary time t, is obtained as 
long as i"i. is nonsingular. 

If the e r ro r  ellipsoid t s  be minimized is 
associated with only the position components of 
some state vector, q < n, and in that case the 
maximum likelihood filter is only one of a set of 
possible optimum filters. 

9. Minimizing Quadratic Forms in the Estimation 
Uncertainty 

In Section 4 it was pointed that one of the 
criteria used in applying optimization techniques 
is minimizing the statistic 

b =<zT & E >  (9-1) 



Several versions of the positive semidefinite matrix 
;% a r e  of practical importance. 
matrix, the square root of b is the r. m. s.  value of 
the magnitude of the e r ror  vector e associated 
with the state vector xi. If Q is equal to  Cji 
the square root of b is the r.  m. s. value of the 
magnitude of the error  vector e associated with 

-j* x 

If 6 is the identity 

* -i * T *  
Cji, 

* - j  
If Q is given by 

r 1 

h /  
f 6= I (9-2) 

h f ]  

where h is a non-negative constant, the minimiza- 
tion involves velocity variation components that 
a r e  weighted differently from the position varia- 
tion components. In particular, if h = 0, the vel- 
ocity components are  ignored. It is also possible 
to choose Q such that b is equal to  the mean of the 
sum of the squares of the position estimation un- 

* 

* * 
t r [ (EA - EM,) 61 0 (9-9) 

* 
If in addition Q is positive definite, then from Ap- 
pendix D, 

* *  
E~ = E~~ (9-10) 

From Section 7, Equation (9- 10) implies that 

(9-11) * *  
F~ = F~~ 

This equation indicates that the optimum filter i s  
unique as long as Q is positive definite. 

In Sections 6, 8, and 9, three different 
optimization cri teria have been investigated. It 
has been shown that, regardless of which of the 
three cri teria is used, the same optimum filter is 
obtained. This statement is t rue when any linearly 
independent set of six integration constants is used 
to  define the vehicle's variant motion. 

* 

a 

certainty at one time and the velocity estimation 
uncertaintv at another time. 

10. Biased and Unbiased Estimates 

Since zT ;% 2 is a scalar (a i-by-1 matrix), 
In this section it is proved that an unbiased 

estimator based on n fictitious measurements i n  
addition to  the k actual measurements can be con- 

it is equal to  its trace. Then (9-1) becomes 

b = < t r  (eT i% e)> (9-3) * * 
In Reference 7 it is shown that i f  A is an r-by-s 
matrix and B is an e-by-r matrix, 

strutted with the same covariance matrix E as a 
given biased egtimator based on the k actual meas- 
urements. Conversely, a biased estimator can be 

* 

(9-5) 

It wi l l  now be shown that the maximum like- * 
lihood filter FML minimizes the statistic b. 

The Gauss-Markov theorem shows that 
(E, - gML) is positive semidefinite. In Appendix 
D it is shown that if (EA - EML) and ;% a r e  both 

* * 
positive semidefinite, 

(9- 6) 

constructed which has the same covariance matrix 
as a given unbiased estimator in which the n fic- 
titious measurements have been taken into account. 
As a consequence of these facts, there is an op- 
timum biased estimator FOB which simultaneously 
minimizes the volumes of all e r ro r  ellipsoids and 
also the means of all positive semidefinite quadratic 
forms in 2. 

Biased estimators a r e  important because 
they utilize available information in addition to that 
which is obtained from the direct measurements: 
The additional information is i n  the form of the first 
and second moments of the a priori uncertainty of 
the state vector E. 

* 

Thus, When the optimum biased estimator is used, 
>;c #' 

t r  (EA Q)? t r  (kML 6) (9- 7) the resulting estimate of & is more accurate than 
that which can be obtained from the optimum un- 

o r  

b ~ z  b~~ 
* 

* 0 
biased estimator FML, in the sense that EOB 5 

When fi l ter  FA minimizes b, SO that bA is The measurement deviation vector which 
equal t o  bML, then relates only to the measurements actually made w i l l  



P 

* 
be designated for biased estimation. The k-by- The covariance matrix Uu is * 

i 

n matrix relating mB to 2 is HB. 

* 
llLB' H B E  (10-1) 

Correspondingly, the measurement uncertainty 
vector i e  zB, ami ita Covariance matrix is t,. 
FB is the biased filter that is to be used. 
* 

(10-2) (10-9) A * N  

XB E FBmg 

where 2, is the biased estimate of the state vector. 
It ie assumed a priori that the mean value Of is 
the zero vector. The e r ro r  vector fo r ' zB  is eg, 

The unbiased estimate tu and the unbiased * 
filter FU satisfy the equation 

A 

(10- 10) 
A * h )  which is defined by X u -  u u  m 

(10-3) * * A 
LB X R - 2  

F 
matrix. If FB is given, then 

FU = [ gB 

is an n-by-(k + dmat r ix ,  while FB is an n-by-k 
U * * EB is the covariance matrix associated with eg. 

The unbiased measurement deviation vec- 
tor  which includes the fictitious measurements ie  
m -US * 

where the residual matrix F 
It wi l l  now be shown that if  FU is to be unbiased, 

$R 1 (10-11) 
* 

is an n-by-n matrix, & 
( 10-4) then 

% *  [:"I 
FR * = * I - g B H B  * (10-12) 

The fictitious meas~rernents  are aaaumed to be 
the components of the state vector 2. The observed 
unbiased measurement vector is For an unbiased estimate, 

* FU k, = f (10-13) 

- -  (10-5) From Equations (10-7)and (10:ll). 

* 'R1 [ :] 1 . 2  1 
gUku = [ F B  

The (k + n)-by-n matrix ku relates mu to 
X. - 

mu = Hull (10- 6) = $ &  B B  + g R  (1 0- 14) 

When (10-13)and (10-14)are solved for sR, Equation 

fi, =[;I (10- 12) is obtained. 

The measurement uncertainty vector su is matrix EU is given by 

* 

where 

By Equation (7-4), the unbiased covariance * 

rr)  uu = mu - mu 

= [r:i 
E, = % U t U $ u T  (10-15) 

The uncertainty vector eB can be written in 
terms of the unbiased filter characteristics by utiliz- 
ing Equations (10-81, ( l O - l l ) ,  and (10-12). (10-8) 

9 
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1 *. 
F.R 5 = F  u - B -B 

( 10- 16) 

By comparing (10-15)with (10-17), it is seen that 

* * 
EU = EB (10- 18) 

By reversing the argument presented in 
Equations (10-1l)through (10-18), it  may be shown 
that if FU is given and FB is obtained by deleting 
the last n columns of FU, then the biased and un- 
biased covariance matrices obtained satisfy Equa- 
tion (10-18). 1 

Thus, irrespective of whether one s tar ts  

* * 
* 

* 
A symmetric r-by-r matrix M is said to  be 

positive definite i f  the quadratic form 

- x T k 5  > o  (A-1) 
T *  for every non-zero vector E. If M is greater 

than or equal to zero but not necessarily greater 
than zero for every non-zero vector E, M is said to  
be positive semidefinite. 

* 

The principal subdeterminants of a matrix 
may be used to test whether o r  not the matrix is 
positive definite. The principal subdeterminant mk 
of M is defined a s  the determinant of the k-by-k 
matrix formed from the elements in the first  k rows 
and the first  k columns of M.  
element in the i-th row and j-th column of M is 

* 

* 
For example, i f  the 

%C 

designated M.. ;  
13 

m2 = 

with a biased or  unbiased filter, a filter of the other 
type can be constructed such that the two fi l ters 
have identical E matrices. 

and 
* 

Deleting the last n columns of the maximum 
obtained with the use of fic- 

* I  
likelihood filter FML 
titious measurements yields the optimum biased 
filter FOB. Then, 

* 

* 
'OB EB (10-19) 

* 
where EB is the covariance matrix associated with 
the estimation uncertainty obtained by the use of 
any other n-by-k filter FB. This is t rue because 
there is a n  n-by-(n + k)unbiased filter FB with 
covariance matrix EB, and by the Gauss-Markov 
theorem 

* 
I 

I 

E ~ l E ~ ~  = E~~ (10-20) 

Therefore, all  the expressions developed in 
Sections 8 and 9 relating optimum unbiased filters 
to other unbiased filters a r e  also applicable to the 
relationship between optimum biased filters and 
other biased filters. 

(A-2 )  ml = M1l 

(A-  3) 

(A-4) 

* 
M is positive definite i f  and only i f  al l  of its prin- 
cipal subdeterminants are positive. 
principal subdeterminants are zero but none a r e  
negative, Ji4 is positive semidefinite. 

If some of the 

* 

APPENDIX B 

* 
Theorem: If A is a positive semidefinite * 

r-by-r matrix and B is an arbitrary r-by-s matrix, 
thenthe s-by-s matrix *BT k 6 is positive semidefinite. 

Proof: Let be gn arbi t rary s-dimensional 
vector and let 

* 
y = B E  (B-1) 

Then 
T * T *  8 x T k ~ = z  B A B 2  2 0  (B-2) 

because is positive semidefinite. Hence B A B 
is positive semidefinite. 

* T *  h+ 

10 
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9 
Theorem: Let A and B be symmetric r-by- 

$ >  b (C- 1) 

r matrices such that 

Then, 

Ill >_ 

Also, 
I Y  

51 > 0 (C-2) 

only if  

5 4  (C-4) 

Prooi: By a matrix theorem used ip the 
4 

theory of vibration6 (Page 47 of Reference (811, A 
and B can be  simultaneously diagonalized by a non- 
singular matrix M. 

9 

* 

(C- 5)  M * T *  A & = &  

where 6 is a diagonal matrix whose i-th diagonal 
element is di. Ii 3 is- 114, 

* . 
z-*B = *NT(f)-Ak (C- 7) 

Let hk be a column vector whose k-th qom- 
ponent is one and whose,other components a r e  all 
zeros. Let 

Then 

* *  
The inequality holds because (A - B) is positive 
semidefinite. From (C-Q), 

for k'= 1, . . . ., r. 
The determOrmnts of & and A a r e  given by 

IbI = tkl2 ((2-11) 

I X I  = dl d2 , . . .drI%12 0 dl  d 2 . .  . .d,l:l 

((2-12) 
In consequence of (C-101, (C-111, and ((2-12). 

1x1 L 61 > 0 (C- 13) 

I f l B l  ] A I ,  d l  d2 = .  . . . = d r = l ,  
9 * 

and from ((2-7) 

APPENDIX D 

Theorem: Let R and 6 be positive eemi- 
definite symmetric r-by-r matrices, then 

If x is positive semidefinite and a is positive def- 
inite, then 

tr(X 8, = o (D-2) 

only if  
A-8 (D-3) 
* 

Proof: Since A is positive semidefinite, it 
9 

can be diagonalized by an orthogonal matrix M. 
" T i r  * 

b = M  A M  (D-4)  
* 

where D is a diagonal matrix whose i-th diagonal 
element is di. The fact that A is positive semi- 
definite implies that 

* 

di >, 0 (D- 5) 

* 
for i - 1. . . . . , r. Let D1 'be 4 diagonal matrix 
whose i-th diagonal element is d i l l 2  Then 

(D- 6) 

Now,let * * *  * T  
. A 1  = M D1 M (D-7) 

* 
Because M is orthogonal. it follows that 

tr& = tr [ X 1 ( i l T  h] 

* T * *  
By Appendix B, the matrix Al 
gemidefinite and therefore has non-negative diagonal 
elements. Thus, in view &f (D-91, 

B A1 is positive 

tr(it8) > 0 (D-10) 

T o  prove the second part of the theorem, let 

-re 

T 

* 
Al be partitioned into column vector$ sl, , . . , s 

9 
Al =[gl.. . . . . .sr3 (D- 11) 
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